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Model of intermittency in magnetohydrodynamic turbulence
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We extend to the magnetohydrodynamic (MHD) case a recent model of intermittency due to She
and Lévéque [Phys. Rev. Lett. 72, 336 (1994)]. The model that we develop in the framework
of the Iroshnikov-Kraichnan theory of MHD turbulence depends on two parameters that are linked
to anomalous scaling laws of dissipative structures when their characteristic scale I — 0. A brief
comparison with published data stemming from spacecraft observations within the solar wind [L.
Burlaga, J. Geophys. Res. 96, 5847 (1991)] shows that it is a workable model and that within
the framework of the model, dissipative structures in MHD turbulence are sheetlike, as observed in
recent numerical simulations in three dimensions at moderate Reynolds numbers.

PACS number(s): 47.27.—i, 47.53.+n, 52.35.—g, 95.30.Qd

I. INTRODUCTION

Intermittency in turbulent flows has been observed
both in the laboratory and in numerical simulations.
This phenomenon reflects the spatial scarcity of intense
small-scale dissipative structures and is believed to be
responsible for the departure from a pure Kolmogorov
(1941) scaling for the structure functions S, = ([v(z +
l)—v(z)]?) of the velocity field, a departure more strongly
felt at higher p. The ensuing breaking of global scale in-
variance has led to the construction of several models of
intermittent flows, most of which are parameter depen-
dent (see, for example, [1] and references therein). In
the solar wind [2, 3], which is believed to be in a state of
Alfvénic turbulence [4], intermittency has been inferred
as well through, for example, the computation of struc-
ture functions. A recent parameter-free model due to She
and Lévéque [5] (hereafter referred to as SL) currently
attracts much attention, in particular because of its ex-
cellent (better than 1%) agreement with the laboratory
data of [6] and also because it reflects an underlying log-
arithmic Poisson statistics |7, 8] and its associated rare
events. We propose here to extend this model to the
magnetohydrodynamic (MHD) case in the framework of
the Iroshnikov-Kraichnan theory for MHD turbulence [9]
(hereafter referred to as IK) and confront it to observa-
tional data within the solar wind of [2].

II. THE SL MODEL OF INTERMITTENCY

Writing the (say, longitudinal) velocity difference
across a length l as (dv;) = (v(z+I)—v(z)), its p moments
scale as (§v) ~ I¢ with, for the classical Kolmogorov-
1941 (or K41) law [10] C,(,K) = p/3; in particular, for
p = 2, the energy spectrum reads E(k) ~ €¥/3k~5/3,
where € is the average rate of energy dissipation. How-
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ever, both experimental and numerical data disagree with
the Kolmogorov law (K41), a fact attributed to intermit-
tency [11]. In fully developed turbulence, fluctuations of
energy transfer to small scales are presumably present
and are deemed responsible for the intermittency of the
flow. Writing now, for the typical dissipation rate at scale
I, (€}) ~ ™, and using the Kolmogorov (1962) refined
similarity (KRS) hypothesis [12] ¢, ~ év?/l, we imme-
diately obtain (, = p/3 4 7,3 with {; = 0 and {3 =1
and hence 79 = 0 and 73 = 0. The latter is an exact
result for steady fluids, stemming from the conservation
law of energy with isotropy, incompressibility, and homo-
geneity assumed. The KRS hypothesis above, implying
a correlation between the local dissipation rate ¢; and
local velocity fluctuations §v;, may be weaker in the in-
ertial range than in the viscous range [13] and should be
tested, e.g., through careful evaluation of experimental
and numerical data.

Numerous models have been derived to predict the
functional variation of the scaling exponents (, of the
velocity structure functions with p. The successful as-
sumption made by SL is to write a scaling law for the
successive powers of the energy dissipation at scale .
Defining el(p = (#*?)/(P*1), the assumed scale de-
pendence reads

B (o0)l-
4 = el o

where 0 < 3 < 1; in fact, in the SL model, 8 = 2/3 and
e§°°) ~ v/t is an estimate of the maximum amount of
energy that can be dissipated in the most intermittent
structures in a time ¢; ~ [2/3, in accordance with stan-
dard K41 phenomenology. This is equivalent to assuming
that the divergence of the energy flux as [ — 0 follows a
2/3 anomalous scaling law. This 2/3 law in turn leads to
Tp = —2p/3+ Co + f(p), Co = 2 being interpreted as the
codimension of dissipative structures, taken to be fila-
ments (or tubes) in dimension three, and f(p) = —CoB?.
Once Cp and 3 are determined on physical grounds, the
resulting SL model is parameter-free. In Eq. (1), 8 mea-
sures the degree of efficiency of energy transfer from scale
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to scale. Defining m; = ¢/ e§°°) as a normalized transfer
rate, Eq. (1) can also be written

(n?) = By(m) =7

leading to a logg Poisson statistics for B, = 1 Vp (see
[7,14]). For B8 = 1, a hierarchical relationship holds,
namely, (n}) = (m)P corresponding to the Kolmogarov
law, whereas for 3 = 0 one finds (n]) = (m) Vp, an ex-
treme case of intermittency since it implies that all the
dissipation is concentrated in one single structure of char-
acteristic transfer rate €; = e,(°°).

In fact, we can recast the SL model in the framework
of a two-parameter model, a formulation that can also be
found in [7, 8]. Indeed, the scaling of the most dissipative
features can be left open (i.e., t; ~ I* with £ > 0) and
so can the codimension Cy of the intermittent structures.
We thus obtain (see also [7,8]) 7, = —zp + Co + f(p)
and f(p) = —Cof3?, leading to

z

(o = §(1 —z)+Co[l—BP/3] |, Co= =5 ©
Writing (¢ = 2 — pg and (9 = 3 — pg we have pg =
z2/Co = z(1 — B) and pg = z(2 — B — %) so that
their ratio r9 ¢ = pe/pe is independent of . Thus the
experimental measurements of the (¢ and (9 exponents
lead directly to the determination of the two parameters
of the model (with 0 < 8 < 1) since

B=-2+r9e, z=pe/(1-p) . (3)

Note that we have 2 < r9 g < 3; when 8 = 1 correspond-
ing to the nonintermittent case, ug = 0 and = = 0 [15].

From the experimental determination of (, in [6], we
obtain 8 ~ 0.68 and z ~ 0.69, close to the original val-
ues in the SL model. Taking now the published results of
three-dimensional numerical simulations of homogeneous
turbulent flows in [16], we find 8 ~ 0.76 and = ~ 0.71.
The discrepancies between the two sets of values either
can be due to the fact that the numerical data is still
somewhat unresolved, the Taylor Reynolds number be-
ing quite low compared to that of experimental data, or
can be linked to the extended self-similarity (ESS) hy-
pothesis [6], whereby self-similarity is extended to the
viscous subrange by plotting structure functions against
each other, e.g., in terms of {3 homogeneous to a length
scale, as opposed to using the variable !/ in the abscissa.
This hypothesis is not yet fully tested, in particular for
large differences between the orders of the structure func-
tions [17], although it is known to work in the framework
of scalar models of turbulence {14] including in the MHD
case [18]. In order to test whether this leads to a bet-
ter agreement with SL, one could introduce as well the
ESS hypothesis into the analysis of the numerical data
in [16]. It should also be noted that in shell models with
hyperviscosity (whereby the dissipative Laplacian opera-
tor written in Fourier space k2 is replaced by k2** with
a > 0), it has been shown [19] that {3 # 1, but that the
universality in scaling is recovered when dealing with a
normalized exponent {, = (/{3 (in relation in fact to
the ESS hypothesis).

III. COUPLING TO A MAGNETIC FIELD

We now proceed to extend the SL model to the case of
the coupling between the velocity and the magnetic field.
The incompressible MHD equations using the Elsdsser
variables z¥ = v & b read

Ozt T + * +o2, * —v2,F 4

—(—,ﬁ——i-z -Vz©= = -Vp* +v7Vz™ +v z (4)
and V - z* = 0, with p* = p/p + b?/2 the total pressure,
v the velocity, and b the magnetic field (in units of the
Alfvén velocity); 2vt = v + 7, where v and 7 are the
viscosity and the magnetic diffusivity. In the IK theo-
retical framework, it has been argued [9] that in MHD
turbulence, nonlinear transfer to small scales are ham-
pered by the fact that z* eddies only interact when they
meet, as they travel in opposite directions along the lines
of a large-scale quasiuniform magnetic field By. This re-
duces drastically the level of energetic transfer to small
scales [20] so that the average energy transfer time is now
Ter = Tl Rer, where

Reg = (Tu1/74)°

measures the efficiency of the nonlinear interactions,
Tal = £/z is the eddy turnover time (where z+ ~ 27 ~ z
in the uncorrelated case; see [21]), T4 = £/Bg is the
Alfvén time, and a is an arbitrary power law. It is easy
to show that the flux scales as €, ~ 29/£B§ with

g=a+3 ;

the ensuing energy spectra read E,(k)
= (€,Bg)?/9k—(1*+2/9), In particular, in the IK theory,
a = 1; this leads to an isotropic energy spectrum (either
for ET = EV + EM, where EV and EM are the kinetic
and the magnetic energies, or for E¥ corresponding to
the z* variables)

E(k) ~ (€Bo)*/? k=3/2

This IK spectrum assumes that the correlations between
the velocity and the magnetic field, as measured, for ex-

ample, by the coefficient p = %&—‘_%bq)—), are null [22]. There

are many numerical studies of MHD turbulence showing
the plausibility of the IK scaling [23], as well as other
consequences of such reduced transfer; for example, the
fractal dimension of isodensity surfaces of the current
density in MHD turbulence (and of vorticity) has been
estimated following [24], but taking Alfvén waves into
account [25]. Numerical simulations in MHD turbulence
on a two-dimensional grid of 20482 points [25] and in the
fluid case in three dimensions on a grid of 240% points
with good temporal statistics [26] both appear to agree
with such estimates (although the error bars are large).

The MHD equations have the same type of scale in-
variance as the Navier-Stokes equations (namely, £ — A¢,
U — APU, and t = £/U), as well as energy conservation;
both types of constraints act on nonlinear interactions;
power laws in £/fg, where £y is the energy-containing
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scale, arise as natural solutions to the dynamical equa-
tions, broken only in the dissipative range. The rela-
tionship equivalent to the Kolmogorov refined similarity
hypothesis for MHD turbulence reads

e ~ 6z7 [{B§ ,
leading to {, = p/g + 7p/g. Assuming
B 1-8
" = AP (5)
with 0 < B < 1, together with ¢; ~ [®B, we obtain
Tp = —xpp+CE + f(p) = —xzpp+CE(1 - B%) as before.

The analysis follows straightforwardly as in the SL case
and gives

G =2 -2p) +CE-PY") . OF = 25,

(6)

where we have used, as in the fluid case, 7o = 0 and
71 = 0 (since the mean flux € is constant by definition)
for all g; thus, in the general case (p—y = 1. For the
IK phenomenology (a = 1) to which we now restrict the
analysis, g = 4 [25, 27], leading to {4 = 1. The model of
intermittency in MHD turbulence that is proposed here
in the framework of the IK theory thus reads

T
G=b0-zs)+CBL-pYY , CF =22

The scaling of structure functions depends on the nonlin-
earities of the system and thus differs for Navier-Stokes
and MHD turbulence. The relationship (; = 1, on the
other hand, is of a different nature. For K41, it can be
demonstrated from the primitive equations using homo-
geneity, isotropy, incompressibility, and stationarity. In
the MHD case, such a demonstration is lacking. It has
been shown in the context of shell models [14, 19] in the
fluid case that one may have (3 # 1 and yet recover scal-
ing laws for the structure functions in good agreement
with the SL model for the relative exponents ¢ = (,/(3.
Furthermore, in [28], in the context of the analysis of
direct numerical simulations of two-dimensional Navier-
Stokes turbulence, it is shown that the relative exponents
(p are to be used in agreement with the ESS hypothesis,
in part because they are better evaluated experimentally
since they give rise to a more extended power-law range.
In that context, Eqgs. (7) and (6) may apply either to
absolute exponents or to relative ones (,/(,.

Defining now (g = 2 —puf =2 —zp(1—8p) and (12 =
3—ub =3—-25(2-Bs — B, with rg = pB/uf, we
can again solve simply for zp and 8 in MHD turbulence
with

Be=-2+rp , zp=upg/(1-Ps) , (8)
given reliable data up to the 12th order of the structure
functions.

Of the two-parameter (zg,CZ) models in Eq. (7),
one stands out, which we coin “standard”; it obtains as-

suming m(BS) = 1/2, in agreement with the scaling used
in deriving the IK spectrum, and assuming a fixed and
integer codimension of dissipative structures, which in
MHD turbulence are close to sheets [29], in line with
the phenomenological analysis made in the SL model for
the fluid equations; thus C’f S = 1, and we again have

mg) = ﬂ(Bs). In the standard case with no free parameter,
one then obtains

¢ =Er1-1/274 (9)

with dissipative structures being sheetlike. For the
energy spectrum (p = 2), the standard model gives
E(k)5) ~ k=304 3 correction slightly larger than in
the SL model for fluids. Equation (9) has been derived
independently in [30]. We wish to remark that in MHD
turbulence, it is found that the dissipative layers coincide
spatially with current and vorticity sheets [29], whereas
vortex filaments themselves (in the fluid case) are not
dissipative and thus exist for times long compared to the
eddy turnover time and are sheathed by dissipation.

Note that if Cp = z/(1 — 3) is the codimension of dis-
sipative structures, it follows that Co < D, where D is
the dimension of space. Assuming that the parameter
z is known (for example, being determined from phe-
nomenology), this in turn gives a condition on the sec-
ond parameter of the model, namely, 8 < 1—z/D. With
superscripts denoting dimensionality of space and sub-
scripts referring to either the fluid or the MHD case and
with the “standard” values :cf\lss) = 2/3 and :cg) =1/2,
this condition reads 0 < 8 < B with in the fluid case
—1(\?5])) = 7/9 and ,31(\,251)) = 2/3, whereas in MHD turbu-
lence we obtain BSD) =5/6 and BgD) = 3/4. Note that
the condition in MHD turbulence is less restrictive than
for Navier-Stokes turbulence.

IV. COMPARISON WITH SOLAR WIND DATA

We now confront the proposed model with published
solar wind data, that of the Voyager spacecraft [2] at
8.5 astronomical units (A.U.). Following the analysis
in [14, 19], we use the relative exponents (,/(4 for the
analysis of the solar wind data, compatible with IK phe-
nomenology and obtain from Egs. (8) 8 = 0.45 and
zp = 0.52 (hence C(? = 0.95). Taking into. account the
error bars in the data, the ranges for the two parameters
of the MHD turbulence model are 0.32 < 8 < 0.52 and
0.50 < zp < 0.53, leading to 0.74 < Cp < 1.09. Note
that the computed value of g is close to that stemming
from the IK theory; but the second relationship of the
standard SL model (namely, zp = Bg) does not appear
to be fulfilled when taking into account the lowest val-
ues compatible with the error bars. A similar discrepancy
was already noticed in the context of shell models for flu-
ids [14], where z = 8 only when a second invariant of the
model equations—kinetic helicity—obtains, besides the
energy, a result that could be linked to the dynamical
importance of invariants. It should be noted that impos-
ing both the value of z and the equality x = 3 exactly
determines the codimension of dissipative structures once
the anomalous scaling of the temporal evolution (t; ~ £*)
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is fixed by dimensional constraints and/or phenomenol-
ogy; this indeed leads to filaments in three-dimensional
Navier-Stokes turbulence and presumably sheets in MHD
turbulence. Note that several types of dissipative struc-
tures may arise in the dynamical evolution of the flow,
leading to some sort of multifractality. If we pursue this
interpretation of the parameter Cy as being the codi-
mension of the dissipative structures, we see that these
structures in the solar wind at 8.5 A.U. are of dimension
~ 2.11, i.e., sheetlike; similar structures have been ob-
served in recent three-dimensional simulations of MHD
turbulence [29]. The evaluation of this dimension of dis-
sipative structures is to be compared with that stemming
from a different model of intermittency [18] based on a
binomial process in which the open parameter relates to
an asymmetry in energy transfer to small eddies; this di-
mension is found to be ~ 2.9, i.e., very close to isotropic
structures. However, we should note that the determina-
tion of the two parameters of the model using Egs. (8) is
very sensitive to the precise evaluation of the anomalous
exponents of the structure functions.

For high values of the structure function exponent p,
the scaling ¢, = f(p) in [2] appears linear with a slope
~ 0.15, compatible with the linear part of the standard
IK law ¢, ~ p/8. Similarly, examining the numerical data
for three-dimensional (3D) fluid flows in [16] at high p,
the scaling appears again linear with now a slope ~ 0.1,
to be compared with {, = p/9 for the linear part of the
SL model. Note that at high p, we get 62F ~ 822, so
that the scaling of high-order structure functions are in
fact the scaling for the suprema of the variables.

Far from the sun, as for the data just examined here
from Voyager in [2], the turbulence has had time to fully
develop. On the other hand, in the data from Helios [3]
at distances between 0.3 and 1 A.U., the flow may very
well be dominated by waves, with little nonlinear trans-
fer to small scales. As shown in [3], the scaling of (, is
nonlinear, with a slow growth of the (, exponents with
p. Although parameters for the model could be adjusted
to the data, the model presented in this paper may not
necessarily apply because of a lack of substantial non-
linear transfer, as well as strong dissipation of outward
propagating z* waves as suggested in [31].

V. DISCUSSION

A two-parameter intermittency model for MHD turbu-
lence is proposed along the lines of the one derived in [5,
7, 8] in the fluid case. It results in the prediction of the
variation of structure functions of order p with p given
in Eq. (7). The two parameters are related respectively
to the anomalous scaling of the characteristic time of the
most intermittent structures and to their codimension.
The essential assumption of the model, following [5], is
linked to the existence of a hierarchy of successive mo-
ments of energy dissipation given in Eq. (5). The model
is confronted with the observed anomalous exponents of
structure functions in the solar wind far from the sun
[2]; relatively good agreement obtains with the standard
model of Eq. (9).

An open question here concerns the role of the other

two invariants of the MHD turbulence equations, namely,
the cross correlation E€ = (v - b) and the magnetic he-
licity HM = (A - b) [32] (or in two dimensions AM =
(A - A)), where A is the magnetic potential. As noted
before, a lack of universality in the exponents 8 and z=
was obtained in [14] in the context of shell models of tur-
bulent transfer: indeed, a wide variety of values for such
exponents is found, with a sharp transition with z = g3
only when the model fulfills the invariance (in the inviscid
case) of both the kinetic energy and the kinetic helicity
HV = (u-(V x u)). Whether the z = f3 relationship,
within the framework of shell models, holds only when
8, HV = 0is fulfilled could be checked further by comput-
ing the anomalous exponents z and ( of shell models with
a different exponentiation for the discretization of wave
numbers for which the dual invariance property holds for
a different value of the coupling parameter in the shell
model equations, as stated in [33].

In the fluid case, is the fact that in the SL model
B = 2/3 (and thus z = 8) a mere symptom of the con-
dition that the cascade of energy (although in opposite
directions in two and in three dimensions) nevertheless is
ruled by the same SL-type constraint so that in three di-
mensions in fact the flow achieves the minimum intermit-
tency compatible with local 2D dynamics? Recall that
the Biot-Savart swirling flow induced by the strong local
vorticity of an isolated filament is quasi-two-dimensional
and is found in numerical simulations to be ~ 1. It could
itself undergo locally an inverse cascade of energy initi-
ating a flow at larger scales. The filament itself having
a large aspect ratio, this large-scale flow could be felt
on distances of the order of some fraction of the inte-
gral scale. If we take as a diagnostic of intermittency the
magnitude of B (the farther from unity, the more inter-
mittent the flow), then we note that in the 3D case
takes the maximal value allowed by the 2D case or, in
other words, the minimal intermittency compatible with
the local quasi-2D dynamics. This remark is to be con-
nected with the fact that, following [34], a minimization
principle of energy dissipation taking into account the in-
variance of helicity leads to Beltrami flows for which, of
course, the Lamb vector u X w (where w is the vortic-
ity) is null (within pressure terms) and no intermittency
can develop [recall that, using Schwartz inequality, the
invariance of kinetic (magnetic) helicity indeed provides
a lower bound to kinetic (magnetic) energy]. Although
the above argument is speculative, it allows for an un-
derstanding of the role played by the conservation prop-
erties related to vorticity. These constraints are strong
since, for isolated filaments, they are local conservation
laws. However, such a helical structure is unstable un-
less the nonzero axial flow w satisfies w = C(v), where
9 is the stream function associated with the 2D swirling
flow (see [35]). In fact, whereas in the initial phase of
evolution of a turbulent flow energy goes mostly to small
scales, it could be that in the later stages in a quasisteady
flow, energy goes both ways with a small resultant energy
transfer to small scales [36]. This might be where helicity
conservation enters in a phenomenological description of
intermittent mode coupling in turbulence; however, only
vorticity of the order of 10% is contained in the filaments
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on which helicity (and circulation) is invariant. This type
of argument, moreover, does not take into account the
interactions between filaments, or the interaction of the
filament with the turbulence bath containing most of the
energy, and playing the role of a heat bath by analogy
with thermodynamics.

On the other hand, in MHD turbulence with zg = 1/2,

we have BgD) > BgD) > x g (see the end of Sec. III); fur-
thermore, the dissipative structures are quite unstable,
contrary to their fluid counterpart. They keep evolving,
for example, through X-point reconnection; this gives
rise to the possibility of further intermittency because of
small-scale activity linked, for example, to the tearing
mode, presumably counterbalanced by the ordering due
to an inverse cascade of either AM or HM. To further
understand the role of the conservation of the topolog-
ical MHD turbulence invariants H™ and A™, it might
be useful to generalize the MHD turbulence shell models
(see, e.g., [37]) in two ways: (i) similarly to what is done
for fluids by introducing nonlinear coupling between a
wider range of shells, whereby allowing for a definition
of magnetic (and kinetic) helicity in order to study the
effect of its conservation on intermittency, and (ii) using
complex variables, it should be possible to introduce the
Alfvén coupling leading to the IK (instead of the Kol-
mogorov law) spectrum.

The analysis of experimental, numerical, and geophys-
ical data far from the Sun has led to a scaling for the
characteristic time ¢; close to the one expected from di-
mensional analysis (the Kolmogorov law in fluid turbu-
lence and the IK theory in MHD). This would be worth
checking with numerical simulations of MHD flows, for
example, in the context of a model of intermittent heating

of the solar corona [38]. A three-dimensional numerical
simulation of forced MHD turbulence in the homogeneous
case can also be performed, although the spatial resolu-
tion attainable by present-day computations is moder-
ate. However, when using algorithms with a reduced set
of wave numbers, one finds that at high Reynolds num-
ber the intermittency corrections to the Kolmogorov law
disappear within the inertial range [39]. Does the same
result hold in MHD turbulence? This suggests that one
should (a) perform in MHD turbulence a computation us-
ing a lean method (in terms of memory and CPU-time),
possibly in the spirit of [40], allowing as well the investi-
gation of the role of correlations between the velocity and
the magnetic field, and (b) perform a scale-dependent
intermittency correction analysis for solar wind data, as
well as logarithmic Poisson statistics, compatible with
the SL analysis both in the fluid and in the MHD case.
In the same vein, one should check the ESS hypothesis
directly and in particular perform the scaling analysis
of structure functions with {4 (as opposed to £) as the
independent variable.

Note added. A paper [30] has been brought to our at-
tention, after completion of this work, that derives inde-
pendently the extension of the SL model to MHD in the
weakly correlated case—as given in Eq. (9)—assuming
both standard IK temporal scaling and the development
of current sheets.
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